Understanding the BizTalk Mapper		http://www.bizbert.com

Understanding the BizTalk Mapper

© Daniel Probert 2016
V2.0 Published 20th March 2016

Mapper Functoid source code © Microsoft Corporation

The content in this article first appeared as a series of 13 posts on http://www.bizbert.com

Contents

Understanding the BizTalk Mapper: Part 1 - Introduction	3
Update for BizTalk 2013R2	3
Introduction	3
BizTalk Mapper 101	4
History	4
BizTalk Mapper in BTS 2004 / 2006 / 2006R2 / 2010 / 2013 / 2013R2	5
What happens when a map is compiled?	5
What happens when a map is executed?	6
XslTransform vs XslCompiledTransform	7
XSLT v1.0 vs XSLT v2.0	7
Understanding the BizTalk Mapper: Part 2 - Functoids Overview	9
Understanding the BizTalk Mapper: Part 3 - String Functoids	10
Understanding the BizTalk Mapper: Part 4 - Mathematical Functoids	15
Understanding the BizTalk Mapper: Part 5 - Logical Functoids	22
Understanding the BizTalk Mapper: Part 6 – Date/Time Functoids	28
Understanding the BizTalk Mapper: Part 7 – Conversion Functoids	30
Understanding the BizTalk Mapper: Part 8 – Scientific Functoids	33
Understanding the BizTalk Mapper: Part 9 – Cumulative Functoids	38
Understanding the BizTalk Mapper: Part 10 – Database Functoids	45
Understanding the BizTalk Mapper: Part 11 – Advanced Functoids	51
Understanding the BizTalk Mapper: Part 12 – Performance and Maintainability	57
Performance	57
Summary of Tests	58
Testing performance in isolation (non-BizTalk)	59
Performance Test Results	59
Measuring Memory Usage in BizTalk	61
BizTalk Memory Test Results	61
Byte Arrays	61
Analysing the performance results	62
Maintainability	63
External XSLT	63
Serializable Classes	63
Why is it so difficult to edit code in the Script functoid?	63
Documentation	64
Understanding the BizTalk Mapper: Part 13 – Is the Mapper the best choice for Transformation in BizTalk?	65
Transformation Choices	65
BizTalk Mapper	65
Custom XSLT with the BizTalk Mapper	66
External Transform Engine	66
Transformation in code	67
Which one should you use?	67
Appendix A: Useful Links	69

[bookmark: _Toc447268181]
Understanding the BizTalk Mapper: Part 1 - Introduction

In this section:
Update for BizTalk 2013 R2
Introduction
BizTalk Mapper 101
History
BizTalk Mapper in BTS 2004 / 2006 / 2006R2 / 2010 / 2013 / 2013R2
What happens when a map is compiled
What happens when a map is executed
XslTransform vs XslCompiledTransform
XSLT 1.0 vs XSLT 2.0
[bookmark: Part1Update][bookmark: Part1Introduction][bookmark: _Toc447268182]Update for BizTalk 2013R2
I originally wrote this article in 2008, and it was aimed at BizTalk 2006 R2. Since then, we’ve had 3 more versions of BizTalk: 2010, 2013, and 2013R2. With BizTalk 2016 entering CTP in the next few days, I thought it was time to revisit this article and update it for the latest (public) version of BizTalk.

At the time I wrote this article, I was of the view that the mapper was always the answer. In fact, the reason I started the article was that I had an argument with a colleague over what technology was better for transforming data in BizTalk: Maps (i.e. XSLT) or C# (serializing/deserializing your XML into a class). I actually set out to prove my colleague wrong by comparing the two – and ended up surprising myself by just how little there was in the comparison.

8 years on, and my views have changed (somewhat): I spent 4 years working on a very large BizTalk system that had huge throughput (200tps) and very low latency (<500ms) requirements, and maps had to go out the window. In fact, we took over the system from a well-known consultancy that had used standard BizTalk practices i.e. maps, pipelines etc. The system did what it was supposed to, but was horribly slow.

But this was not your average run-of-the-mill BizTalk system. The BizTalk Mapper is still a very powerful tool, and with the advent of Azure and Microsoft’s cloud integration platform (Logic Apps et al) the mapper will live on.

Over the last 8 years, people have asked why it’s important to know what each of the functoids emit: The answer is that it’s the best way to understand what each functoid does. If you can’t get your head around the documentation for the Table Looping functoid (for example) then just look at what XSLT the functoid emits: this should help you understand what it does.

[bookmark: _GoBack]What surprised me in doing this update is that there have been zero changes to the mapper functoids since BizTalk 2006R2. The biggest change has been that support for choosing whether to use XslTransform or XslCompiledTransform for your maps – this can have a significant impact on performance (as seen later).

I’m still a firm believer that you shouldn’t be creating complex maps in the Mapper unless you understand how XSLT works, and I hope that this article helps you with that understanding.
[bookmark: _Toc447268183]Introduction
The BizTalk Mapper is an integral part of the BTS toolkit and, depending on your inclination and experience, you will probably either love, hate it, or not care about it.

At its core, the BizTalk Mapper is simply a visual tool for specifying XSLT (eXtensible Stylesheet Language Transformations).
This XSLT is used to transform one stream of XML data into another stream of XML data. And since a "stream of XML data" = "message in BizTalk", this means transforming one message into another message.
[Aside: you might think that the Mapper allows you to specify multiple source or destination messages, but this is actually a trick – BizTalk creates a special schema with one part per input/output message – there's still only one input/output message]

How well the BizTalk Mapper performs its task depends on the complexity of the transformation you're attempting – and the skill/experience of the developer using the BizTalk Mapper!
[bookmark: Part1BTSMapper101][bookmark: _Toc447268184]BizTalk Mapper 101
The Mapper presents you with source and destination panes, displaying your source/destination schemas in a tree view.
You then link source elements/attributes to destination attributes/elements, optionally using functoids to perform an operation.
A large collection of default functoids are included, and you can write your own functoids if the operation you're performing isn't included.
One of the functoids (the Script functoid) allows you to directly type in XSLT/C#/VB.NET/JScript or specify a .NET assembly to call to perform an operation.

Additionally you can specify your own XSLT file to use if you have one (e.g. if you use Altova MapForce or Stylus Studio to maintain XSLT) – this will replace anything the Mapper would generate.
[bookmark: Part1History][bookmark: _Toc447268185]History
The BizTalk Mapper was originally unveiled with BizTalk Server 2000.
In its original incarnation, the Mapper was a separate executable, which worked hand-in-hand with the BizTalk Editor.

A developer would use the BizTalk Editor to create a specification (analogous to a schema in today's BizTalk), and then use the BizTalk Mapper to map from one specification to another.

A specification was an XDR (Xml-Data Reduced) representation of a document.
XDR specifications could represent DTDs, XML docs, EDI docs, flat files, etc. by noting the position of the elements within them.
(by comparison, BizTalk Server from v2004 onwards uses XSDs (Xml Schema Definition) to accomplish the same task).
BizTalk could convert from a source format to an Xml Document (and vice versa) by referencing the XDR specification.

The XSLT generated by the BizTalk Mapper would convert (map) one Xml Document into another Xml Document, and this Xml Document would then be converted into the destination format via the XDR.

The BizTalk Mapper from BTS 2000/2002 would look very familiar to current BizTalk developers – most of the functoids we use are all there, as is the familiar source/destination grid:

[image: BTS Mapper 2002]

Under the covers, however, the Mapper was predominantly VBScript based.
Most of the functoids used VBScript to perform the functions, and the script functoid only allowed you to type in VBScript (or JScript in BTS 2002).

One thing about the Mapper never changed though: it was used to generate XSLT, which in BTS 2000/2002 was consumed by the MSXML 3.0 parser to perform transforms.
[bookmark: Part1Mapperin20042006][bookmark: _Toc447268186]BizTalk Mapper in BTS 2004 / 2006 / 2006R2 / 2010 / 2013 / 2013R2
The Mapper present in BizTalk since 2004 still performs the same functions. In fact, it looks very similar, and even has the same functoids (along with some new ones).
However, there are some important differences:
· The Mapper is now integrated into Visual Studio
· The default functoids that used to emit VBScript now emit inline C#
· The Scripting functoid allows you to specify inline XSLT/C#/VB/JScript or to call a method in a GACced assembly
· BizTalk uses XSDs to describe messages, so you select Schemas in the Mapper
[bookmark: Part1WhatHappensCompilation][bookmark: _Toc447268187]What happens when a map is compiled?
When the project containing your map is built, the compiler does the following:
1. Generates XSLT from your BTM file (you can see this XSLT by right-clicking your map and choosing "Validate Map" – in the output window you'll see a link to an .xsl file containing your XSLT)
2. Generates a class to represent your map which contains the XSLT as a string, and (optionally) the Extension Object data (also as a string). The class inherits from Microsoft.XLANGs.BaseTypes.TransformBase.

The generated class is what is used to perform the translation.
If you disassemble the class (here using ILSpy) you'll see something like this:
[image: MapClassSample]
What's interesting here is that the XSLT is stored as strings – and is repeated: once in a member variable at the top, and then again as a string literal in the XmlContent property (I would imagine that this is a bug in the compiler, and that the XmlContent property is supposed to return the value of the _strMap member variable – but who knows!).

What's important to note is that the XSLT is not compiled in any sense of the word.
That doesn't happen until you execute the map.

Important Note: If you use the Custom XSL Path property on a map file (to specify an external XSLT file) then the contents of that XSLT file are what appear in the above class – that is, there is no link to the file: instead the contents are copied into the class. In fact, once compiled you can't tell from looking at the class whether the XSLT was from an external file, or created by the BizTalk Mapper.
[bookmark: Part1WhatHappensExecution][bookmark: _Toc447268188]What happens when a map is executed?
As of BizTalk 2013, you now have a choice of whether the XslTransform or XslCompiledTransform
Is used for your map (it’s a property on your map). Previous to BizTalk 2013, all versions of BizTalk used the .NET 1.x XslTransform class to perform transformations.
(note that if you click on that link to go to the MS documentation there's a big warning saying:
NOTE: This API is now obsolete.
That's because the XslTransform class was replaced with the XslCompiledTransform class as of .NET 2.0.)

XslCompiledTransform compiles your XSLT and gives much better performance for subsequent runs of your map – but the first time you run it, it is slower than using an XslTransform as it has to compile your map.

The Transform property looks like this:
public XslTransform Transform
{
 get
 {
 StringReader input = new StringReader(this.XmlContent);
 XmlTextReader stylesheet = new XmlTextReader(input);
 XslTransform transform = new XslTransform();
 transform.Load(stylesheet, null, base.GetType().Assembly.Evidence);
 return transform;
 }
}

(I'm glossing over the fact that there is also a ScalableTransform property which returns a Microsoft.BizTalk.ScalableTransformation.BTSXslTransform object – which allows for messages to be streamed to/from disk if they're over a certain size - see here for more information).

When BizTalk calls the Transform property (for example, when executing a map inside of an orchestration, in which case the XslTransform.Transform() method is called by the Microsoft.XLANGs.Core.Service.ApplyTransform() method) the above code is executed to load your XSLT into an instance of an XslTransform class.

Note: The XslTransform.Load() method is called using the current Assembly's evidence – this causes the XSLT to be regarded as fully trusted, indicating that any inline scripts will be run with full permissions.

All that BizTalk has to do now is call XslTransform.Transform() to perform the transformation, passing in the source message and an XsltArgumentList parameter (containing instances of any classes/types used by the XSLT e.g. classes specified in external assemblies) and the Transform() method will return an output stream containing the transformed message.
[bookmark: Part1XSLTransformvsXslCompiledTransform][bookmark: Part1XSLT1vs2][bookmark: _Toc447268189]XslTransform vs XslCompiledTransform
As mentioned above, all flavours of BizTalk previous to BTS 2013 used the obsolete XslTransform class to perform transformations.
However, .NET 2.0 introduced the new XslCompiledTransform class for performing transformations, and this was exposed by BizTalk 2013 and above.

There are many differences between the two, but to my mind the two most important features introduced by the new class are:
· Full support for XSD includes and imports
· Proper compilation of XSLT to MSIL (which means better performance).

In a lot of cases, XslCompiledTransform will significantly outperform XslTransform for the same XSLT.
The caveat is that because the XSLT is compiled to MSIL, the first time the transform is run there is a perf hit, but subsequent execution should be a lot faster.

For a detailed look at the perf differences between the two classes (plus comparisons with other XSLT processors) have a look at this post.
[bookmark: _Toc447268190]XSLT v1.0 vs XSLT v2.0
I can't finish this post without a brief note about this: BizTalk (up to 2013 R2) only supports XSLT v1.0.
XSLT v2.0 has a lot more functionality in it, but you can't use this in your maps as there is currently no support in .NET for XSLT v2.0 – and there is unlikely to ever be any (and see here).

At the moment if you want to use XSLT 2.0 in .NET (or BizTalk) you have to use an external XSLT processor – something such as SAXON (or here for the open-source version).
You would then have to roll your own class to use this, and use the class from within an orchestration – meaning you can only use XSLT 2.0 from within orchestrations, and not from receive/send ports.

XSLT 2.0 provides a much richer set of operations/functionality and would mean that there wouldn't be such a need to drop out to assemblies/inline code for more complex operations.

But I suspect that Microsoft is more likely to introduce either XQuery or LINQ to XML support in a future version of the BizTalk Mapper.

Note [30/03/2016]: I appear to have been proved wrong about this last statement: Microsoft never did implement XSLT 2.0 in BizTalk, or anything else: the mapper engine is still the same, although in later versions of BizTalk you can change whether an XslTransform or XslCompiledTransform is used.

Even in the Transform Service connector for Logic Apps, XSLT 1.0 is still used, I suspect mainly to maintain compatibility with BizTalk generated maps.
[bookmark: _Understanding_the_BizTalk_9][bookmark: _Toc447268191]
Understanding the BizTalk Mapper: Part 2 - Functoids Overview
This whole series of posts started because I wanted to show what XSLT was emitted when using the default functoids provided by Microsoft.
Specifically, I wanted to show the XSLT emitted by the Advanced Functoids. Understanding this XSLT can help in understanding how to use the functoids.
For some reason (as seems to happen with me) the post expanded into a whole series on the Mapper… every time I explain one thing, I seem to want to explain all the things that the first thing is based on… oops.

Anyway, suffice to say that the next 9 posts will cover the code emitted by all of the default functoids provided with BizTalk 2004 – 2013R2.

One thing to realise is that the majority of the default functoids emit inline C# code – which is odd as quite a lot of the functionality can be performed using pure XSLT.

So for each functoid I've shown:
1. Whether XSLT or C# is emitted
2. Whether an XSLT equivalent exists
3. The XSLT or C# emitted by the functoid
4. Where C# is emitted, the equivalent XSLT to achieve the same functionality (in both XSLT v1.0 and v2.0)
For the Advanced Functoids knowing what the functoids emit can be useful in understanding how to use them.

For the other functoids, knowing the equivalent XSLT to use is useful if you want a map which performs better as (generally speaking) using native XSLT will be faster than the equivalent C# for simple operations.

Some useful references when reading these sections are:
XSLT 1.0 Function reference
XSLT 2.0 Function reference
XSLT/XPath Operators

[bookmark: _Understanding_the_BizTalk][bookmark: _Toc447268192]
 Understanding the BizTalk Mapper: Part 3 - String Functoids
The String Functoids are probably the most frequently used in maps (in my experience), mainly because they’re the most familiar to a procedural programmer (i.e. a C# or VB programmer). However, because they all emit inline C#, they perform the slowest so if you want your maps to run faster you’re better off using the corresponding XSLT, or implementing the functionality you require in a separate assembly.

Functoids covered in this category:
	Lowercase
	String Left Trim

	Size
	String Right

	String Concatenate
	String Right Trim

	String Extract
	Uppercase

	String Find
	Common Code

	String Left
	

	String Functoids

	
	[bookmark: Lowercase]Lowercase
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only, can use translate in 1.0

	
	Emitted Code:
public string StringLowerCase(string str)
{
 if (str == null)
 {
 return "";
 }
 return str.ToLower(System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: translate(string, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz')

	
	XSLT 2.0 Equivalent: lower-case(string)

	

	
	[bookmark: Size]Size
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public int StringSize(string str)
{
 if (str == null)
 {
 return 0;
 }
 return str.Length;
}

	
	XSLT 1.0 Equivalent: string-length(string)

	
	XSLT 2.0 Equivalent: string-length(string)

	

	
	[bookmark: StringConcatenate]String Concatenate
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
Note: there will be one overload per unique number of parameters.
Here we show an example with one input parameter, and three input parameters
public string StringConcat(string param0)
{
 return param0;
}

public string StringConcat(string param0, string param1, string param2)
{
 return param0 + param1 + param2;
}

	
	XSLT 1.0 Equivalent: concat(string, string, …)

	
	XSLT 2.0 Equivalent: concat(string, string, …)

	

	
	[bookmark: StringExtract]String Extract
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public string StringSubstring(string str, string left, string right)
{
 string retval = "";
 double dleft = 0;
 double dright = 0;
 if (str != null && IsNumeric(left, ref dleft) && IsNumeric(right, ref dright))
 {
 int lt = (int)dleft;
 int rt = (int)dright;
 lt--; rt--;
 if (lt >= 0 && rt >= lt && lt < str.Length)
 {
 if (rt < str.Length)
 {
 retval = str.Substring(lt, rt - lt + 1);
 }
 else
 {
 retval = str.Substring(lt, str.Length - lt);
 }
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: substring(string, number, number)

	
	XSLT 2.0 Equivalent: substring(string, number, number)
Note: the substring() function takes a length as its last parameter, rather than the position used by the String Extract functoid. Additionally, there is an overload of substring() which takes two parameters, as well as additional substring-before() and substring-after() functions.

	

	
	[bookmark: StringFind]String Find
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public int StringFind(string str, string strFind)
{
 if (str == null || strFind == null || strFind == "")
 {
 return 0;
 }
 return (str.IndexOf(strFind) + 1);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: The method is usually used as an input to the String Extract functoid – however, if using the XSLT substring() function then an index is not needed, so the fact that there is no XSLT equivalent should not cause any issues.

	

	
	[bookmark: StringLeft]String Left
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public string StringLeft(string str, string count)
{
 string retval = "";
 double d = 0;
 if (str != null && IsNumeric(count, ref d))
 {
 int i = (int)d;
 if (i > 0)
 {
 if (i <= str.Length)
 {
 retval = str.Substring(0, i);
 }
 else
 {
 retval = str;
 }
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: substring(string, number)

	
	XSLT 2.0 Equivalent: substring(string, number)

	

	
	[bookmark: StringLeftTrim]String Left Trim
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string StringTrimLeft(string str)
{
 if (str == null)
 {
 return "";
 }
 return str.TrimStart(null);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: the closest equivalent is normalize-space() which trims leading and trailing spaces, and also replaces any groups of spaces in a string with a single space.

	

	
	[bookmark: StringRight]String Right
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string StringRight(string str, string count)
{
 string retval = "";
 double d = 0;
 if (str != null && IsNumeric(count, ref d))
 {
 int i = (int)d;
 if (i > 0)
 {
 if (i <= str.Length)
 {
 retval = str.Substring(str.Length - i);
 }
 else
 {
 retval = str;
 }
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: although there is no single XSLT function for this, the same result can be achieved through use of the string-length() and substring() functions.
e.g. substring(string, string-length(string) – number)

	

	
	[bookmark: StringRightTrim]String Right Trim
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string StringTrimRight(string str)
{
 if (str == null)
 {
 return "";
 }
 return str.TrimEnd(null);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: the closest equivalent is normalize-space() which trims leading and trailing spaces, and also replaces any groups of spaces in a string with a single space.

	

	
	[bookmark: Uppercase]Uppercase
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 Only, can use translate in 1.0

	
	Emitted Code:
public string StringUpperCase(string str)
{
 if (str == null)
 {
 return "";
 }
 return str.ToUpper(System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: translate(string, 'abcdefghijklmnopqrstuvwxyz', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')

	
	XSLT 2.0 Equivalent: upper-case(string)

	

	
	[bookmark: StringCommonCode]Common Code
(this is common code used by all the string functoids)

	
	public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

[bookmark: _Understanding_the_BizTalk_1][bookmark: _Toc447268193]
Understanding the BizTalk Mapper: Part 4 - Mathematical Functoids
Mathematics is not a strong point of XSLT. XSLT v1.0 has very poor mathematic support, whilst XSLT v2.0 has better support, but only by a small amount. Therefore, most of the functoids in this category can only be implemented in C#.
So if you want to perform a complicated mathematical function (i.e. anything more than addition or subtraction!) you’re better off using one of these functoids, or an external assembly.
Once again, inline C# isn’t the fastest, but given a choice between a slow function and no function, you might not have a choice.

Functoids covered in this category:
	Absolute Value
	Modulo

	Addition
	Multiplication

	Division
	Round

	Integer
	Square Root

	Maximum Value
	Subtraction

	Minimum Value
	Common Code

	Mathematical Functoids

	
	[bookmark: AbsoluteValue]Absolute Value
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string MathAbs(string val)
{
 string retval = "";
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 double abs = Math.Abs(d);
 retval = abs.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: abs(number)
Note: In XSLT 1.0, you can achieve the desired result through use of an XSLT template and the xsl:when statement (i.e. check if number is < 0).

	

	
	[bookmark: Addition]Addition
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
Note: there will be one overload per unique number of parameters.
Here we show an example with two input parameters.
public string MathAdd(string param0, string param1)
{
 System.Collections.ArrayList listValues = new System.Collections.ArrayList();
 listValues.Add(param0);
 listValues.Add(param1);
 double ret = 0;
 foreach (string obj in listValues)
 {
 double d = 0;
 if (IsNumeric(obj, ref d))
 {
 ret += d;
 }
 else
 {
 return "";
 }
 }
 return ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: Use the "+" operator e.g. ((number + number) + number) or the sum(number, number, …) function

	
	XSLT 2.0 Equivalent: Use the "+" operator e.g. ((number + number) + number) or the sum(number, number, …) function

	

	
	[bookmark: Division]Division
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
Note: there will be one overload per unique number of parameters.
Here we show an example with two input parameters.
public string MathDivide(string val1, string val2)
{
 string retval = "";
 double d1 = 0;
 double d2 = 0;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 if (d2 != 0)
 {
 double ret = d1 / d2;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: Use the div operator e.g. number div number

	
	XSLT 2.0 Equivalent: Use the div operator e.g. number div number

	

	
	[bookmark: Integer]Integer
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string MathInt(string val)
{
 string retval = "";
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 try
 {
 int i = Convert.ToInt32(d, System.Globalization.CultureInfo.InvariantCulture);
 if (i > d)
 {
 i = i - 1;
 }
 retval = i.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 catch (Exception)
 {
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: the floor() function will give an equivalent result e.g. floor(3.90) will give '3'.

	

	
	[bookmark: MaximumValue]Maximum Value
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string MathMax(string param0, string param1)
{
 double max = Double.NegativeInfinity;
 System.Collections.ArrayList listValues = new System.Collections.ArrayList();
 listValues.Add(param0);
 listValues.Add(param1);
 foreach (string obj in listValues)
 {
 double d = 0;
 if (IsNumeric(obj, ref d))
 {
 max = (d >= max) ? d : max;
 }
 else
 {
 return "";
 }
 }
 if (Double.NegativeInfinity == max)
 {
 return "";
 }
 else
 {
 return max.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: Use the max(number, number, …) function
Note: in XSLT 1.0 you could write a fairly complicated XPath statement to achieve this

	

	
	[bookmark: MinimumValue]Minimum Value
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string MathMin(string param0, string param1)
{
 double min = Double.PositiveInfinity;
 System.Collections.ArrayList listValues = new System.Collections.ArrayList();
 listValues.Add(param0);
 listValues.Add(param1);
 foreach (string obj in listValues)
 {
 double d = 0;
 if (IsNumeric(obj, ref d))
 {
 min = (d < min) ? d : min;
 }
 else
 {
 return "";
 }
 }
 if (Double.PositiveInfinity == min)
 {
 return "";
 }
 else
 {
 return min.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: Use the min(number, number, …) function
Note: in XSLT 1.0 you could write a fairly complicated XPath statement to achieve this

	

	
	[bookmark: Modulo]Modulo
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public string MathMod(string val, string denominator)
{
 string retval = "";
 double v = 0;
 double d = 0;
 if (IsNumeric(val, ref v) && IsNumeric(denominator, ref d))
 {
 if (d != 0)
 {
 retval = Convert.ToString(v % d, System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: Use the "mod" operator e.g. number mod number

	
	XSLT 2.0 Equivalent: Use the "mod" operator e.g. number mod number

	

	
	[bookmark: Multiplication]Multiplication
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
Note: there will be one overload per unique number of parameters.
Here we show an example with two input parameters.
public string MathMultiply(string param0, string param1)
{
 System.Collections.ArrayList listValues = new System.Collections.ArrayList();
 listValues.Add(param0);
 listValues.Add(param1);
 double ret = 1;
 bool first = true;
 foreach (string obj in listValues)
 {
 double d = 0;
 if (IsNumeric(obj, ref d))
 {
 if (first)
 {
 first = false;
 ret = d;
 }
 else
 {
 ret *= d;
 }
 }
 else
 {
 return "";
 }
 }
 return ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: Use the "*" operator e.g. ((number * number) * number)

	
	XSLT 2.0 Equivalent: Use the "*" operator e.g. ((number * number) * number)

	

	
	[bookmark: Round]Round
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public string MathRound(string val)
{
 return MathRound(val, "0");
}

public string MathRound(string val, string decimals)
{
 string retval = "";
 double v = 0;
 double db = 0;
 if (IsNumeric(val, ref v) && IsNumeric(decimals, ref db))
 {
 try
 {
 int d = (int)db;
 double ret = Math.Round(v, d);
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 catch (Exception)
 {
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: round(number)

	
	XSLT 2.0 Equivalent: round(number)
Note: the XSLT round() function does not take a second parameter – all number are rounded to 0 decimal places. You can achieve rounding to x dp's through use of the format-number(number, string) function:
e.g. format-number(3.55555, '#.00') – but be aware that rounding in this way might not always give the result you're looking for e.g. 9.2850 rounds to 9.28 using format-number() (although this can be coded around in XSLT).

	

	
	[bookmark: SquareRoot]Square Root
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string MathSqrt(string val)
{
 string retval = "";
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 if (d >= 0)
 {
 double ret = Math.Sqrt(d);
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: A square-root can be calculated using an XSLT template – see here (http://bobcopeland.com/srcs/root_xsl.txt) for an example.

	

	
	[bookmark: Subtraction]Subtraction

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
Note: there will be one overload per unique number of parameters.
Here we show an example with two input parameters.
public string MathSubtract(string param0, string param1)
{
 System.Collections.ArrayList listValues = new System.Collections.ArrayList();
 listValues.Add(param0);
 listValues.Add(param1);
 double ret = 0;
 bool first = true;
 foreach (string obj in listValues)
 {
 if (first)
 {
 first = false;
 double d = 0;
 if (IsNumeric(obj, ref d))
 {
 ret = d;
 }
 else
 {
 return "";
 }
 }
 else
 {
 double d = 0;
 if (IsNumeric(obj, ref d))
 {
 ret -= d;
 }
 else
 {
 return "";
 }
 }
 }
 return ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: Use the "-" operator e.g. ((number – number) – number)

	
	XSLT 2.0 Equivalent: Use the "-" operator e.g. ((number – number) – number)

	
	

	
	[bookmark: MathematicalCommonCode]Common Code
(this is common code used by all the mathematical functoids)

	
	public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

[bookmark: _Understanding_the_BizTalk_2][bookmark: _Toc447268194]
Understanding the BizTalk Mapper: Part 5 - Logical Functoids
Whenever I’ve looked at the XSLT generated by a map I’ve always been confused by the amount of inline C# generated by these functoids.
After the String Functoids I’d say that these are the next most widely used and yet all but one of them has an XSLT v1.0 equivalent!
The code emitted for “Logical Equal” always makes me laugh – 12 lines of C# code can be replaced by... (wait for it)… one “=” symbol!

Functoids covered in this category:
	Equal
	Logical Existence

	Greater Than
	Logical NOT

	Greater Than or Equal To
	Logical Numeric

	IsNil
	Logical OR

	Less Than
	Logical String

	Less Than or Equal To
	Not Equal

	Logical AND
	Common Code

	Logical Date
	

	Logical Functoids

	
	[bookmark: Equal]Equal
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalEq(string val1, string val2)
{
 bool ret = false ;
 double d1 = 0 ;
 double d2 = 0 ;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 ret = d1 == d2;
 }
 else
 {
 ret = String.Compare(val1, val2, StringComparison.Ordinal) == 0;
 }
 return ret;
}

	
	XSLT 1.0 Equivalent: Use the “=” operator e.g. value = value

	
	XSLT 2.0 Equivalent: Use the “=” operator e.g. value = value
Note: Both the C# version and the XSLT version will perform a case-sensitive comparison.

	

	
	[bookmark: GreaterThan]Greater Than
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalGt(string val1, string val2)
{
 bool ret = false ;
 double d1 = 0 ;
 double d2 = 0 ;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 ret = d1 > d2;
 }
 else
 {
 ret = String.Compare(val1, val2, StringComparison.Ordinal) > 0;
 }
 return ret;
}

	
	XSLT 1.0 Equivalent: Use the “>” operator e.g. value > value

	
	XSLT 2.0 Equivalent: Use the “>” operator e.g. value > value

	

	
	[bookmark: GreaterThanOrEqualTo]Greater Than or Equal To
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalGte(string val1, string val2)
{
 bool ret = false ;
 double d1 = 0 ;
 double d2 = 0 ;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 ret = d1 >= d2;
 }
 else
 {
 ret = String.Compare(val1, val2, StringComparison.Ordinal) >= 0;
 }
 return ret;
}

	
	XSLT 1.0 Equivalent: Use the “>=” operator e.g. value >= value

	
	XSLT 2.0 Equivalent: Use the “>=” operator e.g. value >= value

	

	
	[bookmark: IsNil]IsNil
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
string(node/@xsi:nil) = ‘true’

	

	
	[bookmark: LessThan]Less Than
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalLt(string val1, string val2)
{
 bool ret = false ;
 double d1 = 0 ;
 double d2 = 0 ;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 ret = d1 < d2;
 }
 else
 {
 ret = String.Compare(val1, val2, StringComparison.Ordinal) < 0;
 }
 return ret;
}

	
	XSLT 1.0 Equivalent: Use the “<” operator e.g. value < value

	
	XSLT 2.0 Equivalent: Use the “<” operator e.g. value < value

	

	
	[bookmark: LessThanOrEqualTo]Less Than or Equal To
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalLte(string val1, string val2)
{
 bool ret = false ;
 double d1 = 0 ;
 double d2 = 0 ;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 ret = d1 <= d2;
 }
 else
 {
 ret = String.Compare(val1, val2, StringComparison.Ordinal) <= 0;
 }
 return ret;
}

	
	XSLT 1.0 Equivalent: Use the “<=” operator e.g. value <= value

	
	XSLT 2.0 Equivalent: Use the “<=” operator e.g. value <= value

	

	
	[bookmark: LogicalAND]Logical AND
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalAnd(string param0, string param1)
{
 return ValToBool(param0) && ValToBool(param1);
 return false;
}

	
	XSLT 1.0 Equivalent: Use the “and” operator e.g. expression and expression

	
	XSLT 2.0 Equivalent: Use the “and” operator e.g. expression and expression

	

	
	[bookmark: LogicalDate]Logical Date
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public bool LogicalIsDate(string val)
{
 return IsDate(val);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: an Xpath expression could be created using the dateTime function, but would require parsing out separate date/time portions. There are other implementations available on the internet, but none of them are trivial.
Xpath 1.0 has no native DateTime functionality built in.

	

	
	[bookmark: LogicalExistence]Logical Existence
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalExistence(bool val)
{
 return val;
}
Note: The above method may seem a bit strange, but it makes sense if you understand that you test for existence of a node in XSLT by using the oolean() function, and passing a node (or any sort of value).
The XSLT generated by the Logical Existence functoid wraps the oolean() function round the value passed to the LogicalExistence method like this: userC#:LogicalExistence(oolean(@name)) (where @name was an attribute that we connected to the Logical Existence functoid).

	
	XSLT 1.0 Equivalent: oolean(node)

	
	XSLT 2.0 Equivalent: oolean(node)

	

	
	[bookmark: LogicalNOT]Logical NOT
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalNot(string val)
{
 return !ValToBool(val);
}

	
	XSLT 1.0 Equivalent: not(expression)

	
	XSLT 2.0 Equivalent: not(expression)

	

	
	[bookmark: LogicalNumeric]Logical Numeric

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public bool LogicalIsNumeric(string val)
{
 return IsNumeric(val);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: You can achieve this through use of a statement such as: string(number(value)) != ‘NaN’
Or in Xpath 2.0 using a statement such as: value castable as xs:decimal

	
	

	
	[bookmark: LogicalOR]Logical OR

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
Note: there will be one overload per unique number of parameters.
Here we show an example with two input parameters.
Public bool LogicalOr(string param0, string param1)
{
 return ValToBool(param0) || ValToBool(param1);
 return false;
}

	
	XSLT 1.0 Equivalent: Use the “or” operator e.g. ((expression or expression) or expression)

	
	XSLT 2.0 Equivalent: Use the “or” operator e.g. ((expression or expression) or expression)

	
	

	
	[bookmark: LogicalString]Logical String

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public bool LogicalIsString(string val)
{
 return (val != null && val != “”);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: the same thing can be achieved with an Xpath expression.

	
	

	
	[bookmark: NotEqual]Not Equal

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public bool LogicalNe(string val1, string val2)
{
 bool ret = false ;
 double d1 = 0 ;
 double d2 = 0 ;
 if (IsNumeric(val1, ref d1) && IsNumeric(val2, ref d2))
 {
 ret = d1 != d2;
 }
 else
 {
 ret = String.Compare(val1, val2, StringComparison.Ordinal) != 0;
 }
 return ret;
}

	
	XSLT 1.0 Equivalent: Use the “!=” operator e.g. (value != value)

	
	XSLT 2.0 Equivalent: Use the “!=” operator e.g. (value != value)

	
	

	
	[bookmark: LogicalCommonCode]Common Code
(this is common code used by all the logical functoids)

	
	public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsDate(string val)
{
 bool retval = true;
 try
 {
 DateTime dt = Convert.ToDateTime(val, System.Globalization.CultureInfo.InvariantCulture);
 }
 catch (Exception)
 {
 retval = false;
 }
 return retval;
}

public bool ValToBool(string val)
{
 if (val != null)
 {
 if (string.Compare(val, bool.TrueString, StringComparison.OrdinalIgnoreCase) == 0)
 {
 return true;
 }
 if (string.Compare(val, bool.FalseString, StringComparison.OrdinalIgnoreCase) == 0)
 {
 return false;
 }
 val = val.Trim();
 if (string.Compare(val, bool.TrueString, StringComparison.OrdinalIgnoreCase) == 0)
 {
 return true;
 }
 if (string.Compare(val, bool.FalseString, StringComparison.OrdinalIgnoreCase) == 0)
 {
 return false;
 }
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 return (d > 0);
 }
 }
 return false;
}

[bookmark: _Understanding_the_BizTalk_3][bookmark: _Toc447268195]
Understanding the BizTalk Mapper: Part 6 – Date/Time Functoids
XSLT v1.0 has no support for Date/Time values, whilst XSLT v2.0 has full support.
Therefore, it’s not surprising that your only option is to use C#’s rich support for Date/Time values.
And this is why all of the functoids in this category emit inline C#.

Functoids covered in this category:
	Add Days
	Time

	Date
	Common Code

	Date and Time
	

	Date/Time Functoids

	Note: XSLT 1.0 has no built-in Date/Time functions, whereas XSLT 2.0/Xpath 2.0 does.

	
	[bookmark: AddDays]Add Days
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string DateAddDays(string date, string days)
{
 string retval = “”;
 double db = 0;
 if (IsDate(date) && IsNumeric(days, ref db))
 {
 DateTime dt = DateTime.Parse(date);
 int d = (int)db;
 dt = dt.AddDays(d);
 retval = dt.ToString(“yyyy-MM-dd”, System.Globalization.CultureInfo.InvariantCulture);
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: xs:dateTime(‘2007-12-12’) + xdt:dayTimeDuration(‘PxD’)
Where x (in dayTimeDuration()) is number of days to add e.g. 5 days would be ‘P5D’

	

	
	[bookmark: Date]Date
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string DateCurrentDate()
{
 DateTime dt = DateTime.Now;
 return dt.ToString(“yyyy-MM-dd”, System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: fn:current-date()

	

	
	[bookmark: DateAndTime]Date and Time
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string DateCurrentDateTime()
{
 DateTime dt = DateTime.Now;
 string curdate = dt.ToString(“yyyy-MM-dd”, System.Globalization.CultureInfo.InvariantCulture);
 string curtime = dt.ToString(“T”, System.Globalization.CultureInfo.InvariantCulture);
 string retval = curdate + “T” + curtime;
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: fn:current-dateTime()

	

	
	[bookmark: Time]Time
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string DateCurrentTime()
{
 DateTime dt = DateTime.Now;
 return dt.ToString(“T”, System.Globalization.CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: fn:current-date()

	
	

	
	[bookmark: DateTimeCommonCode]Common Code
(this is common code used by all the date/time functoids)

	
	public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsDate(string val)
{
 bool retval = true;
 try
 {
 DateTime dt = Convert.ToDateTime(val, System.Globalization.CultureInfo.InvariantCulture);
 }
 catch (Exception)
 {
 retval = false;
 }
 return retval;
}

[bookmark: _Understanding_the_BizTalk_4][bookmark: _Toc447268196]
Understanding the BizTalk Mapper: Part 7 – Conversion Functoids
Surprisingly, neither XSLT v1.0 nor XSLT v2.0 have any built-in conversion support (well, not for the scenarios represented in this category anyway).
It is possible to download XSLT libraries which can do this sort of conversion (as mentioned in the notes below each functoid), but the XSLT is not pretty, and I’m not convinced about performance.
So C# is generally your only option here.

Functoids covered in this category:
	ASCII to Character
	Octal

	Character to ASCII
	Common Code

	Hexadecimal
	

	Conversion Functoids

	
	[bookmark: ASCIIToCharacter]ASCII to Character
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string ConvertChr(string val)
{
 string retval = “”;
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 int v = (int)d;
 if (v >= 1 && v <= 127)
 {
 char c = (char)v;
 retval = c.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: There are some inelegant hacks you can use (e.g. listing all the ASCII chars in a variable and selecting by index, or using the translate() function with a list of possible values) but there is no built-in support for this conversion.

	

	
	[bookmark: CharacterToASCII]Character to ASCII
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string ConvertAsc(string val)
{
 if (val == null || val == “”)
 {
 return “”;
 }
 else
 {
 char c = val[0];
 int x = c;
 return x.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: There are some inelegant hacks you can use (e.g. listing all the ASCII chars in a variable and selecting by index, or using the translate() function with a list of possible values) but there is no built-in support for this conversion.

	

	
	[bookmark: Hexadecimal]Hexadecimal
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string ConvertHex(string val)
{
 string retval = “”;
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 int v = (int)d;
 retval = Convert.ToString(v, 16).ToUpper(System.Globalization.CultureInfo.InvariantCulture);
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: There are some inelegant templates you can use to perform this conversion, but they are all quite long and involve string manipulation.

	

	
	[bookmark: Octal]Octal
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string ConvertOct(string val)
{
 string retval = “”;
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 int v = (int)d;
 retval = Convert.ToString(v, 8);
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)
Note: There are some inelegant templates you can use to perform this conversion, but they are all quite long and involve string manipulation.

	
	

	
	[bookmark: ConversionCommonCode]Common Code
(this is common code used by all the conversion functoids)

	
	public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

[bookmark: _Understanding_the_BizTalk_5][bookmark: _Toc447268197]
Understanding the BizTalk Mapper: Part 8 – Scientific Functoids
Yet another category which has no direct support in XSLT v1.0 or XSLT v2.0!
However, given the strong support for scientific functions in .NET, it’s easy to call out to .NET classes, which is exactly what every single one of the functoids in this category does.

Having said that: have you ever used one of these functoids in a map? Care to share a real world example?
I’d be interested to find out how often they are used.

Functoids covered in this category:
	10^n
	Natural Logarithm

	Arc Tangent
	Sine

	Base-Specified Logarithm
	Tangent

	Common Logarithm
	X^Y

	Cosine
	Common Code

	Natural Exponential Function
	

	Scientific Functoids

	XSLT has no intrinsic trigonometric functions, although you can download open source libraries such as FXSL (http://fxsl.sourceforge.net/articles/xslCalculator/The%20FXSL%20Calculator.html)

	
	[bookmark: TenPowN]10^n
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciExp10(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 double ret = Math.Pow(10.0, dval);
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: ArcTangent]Arc Tangent
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciArcTan(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 double ret = Math.Atan(dval) ;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture) ;
 }
 return retval ;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: BaseSpecifiedLogarithm]Base-Specified Logarithm
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciLogn(string val1, string val2)
{
 string retval = “”;
 double dval1 = 0;
 double dval2 = 0;
 if (IsNumeric(val1, ref dval1) && IsNumeric(val2, ref dval2))
 {
 if (dval1 > 0 && dval2 > 0)
 {
 double denom = Math.Log(dval2);
 if (denom != 0)
 {
 double ret = Math.Log(dval1) / denom;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: CommonLogarithm]Common Logarithm
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciLog10(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 if (dval > 0)
 {
 double ret = Math.Log10(dval);
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: Cosine]Cosine
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciCos(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 double ret = Math.Cos(dval) ;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture) ;
 }
 return retval ;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: NaturalExponentialFunction]Natural Exponential Function

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciExp(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 double ret = Math.Exp(dval) ;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture) ;
 }
 return retval ;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: NaturalLogarithm]Natural Logarithm
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciLog(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 if (dval > 0)
 {
 double ret = Math.Log(dval);
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: Sine]Sine
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciSin(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 double ret = Math.Sin(dval) ;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture) ;
 }
 return retval ;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: Tangent]Tangent
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciTan(string val)
{
 string retval = “”;
 double dval = 0;
 if (IsNumeric(val, ref dval))
 {
 double ret = Math.Tan(dval) ;
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture) ;
 }
 return retval ;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: XPowY]X^Y
	

	
	Generates: C#
	Has XSLT Equivalent: No

	
	Emitted Code:
public string SciPow(string val1, string val2)
{
 string retval = “”;
 double dval1 = 0;
 double dval2 = 0;
 if (IsNumeric(val1, ref dval1) && IsNumeric(val2, ref dval2))
 {
 double ret = Math.Pow(dval1, dval2);
 retval = ret.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
 return retval;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: ScientificCommonCode]Common Code
(this is common code used by all the scientific functoids)

	
	public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

[bookmark: _Understanding_the_BizTalk_6][bookmark: _Toc447268198]
Understanding the BizTalk Mapper: Part 9 – Cumulative Functoids
Of the functoids in this category, only Cumulative Sum has a counterpart in XSLT v1.0 – all the others can be performed in XSLT v2.0, but not XSLT v1.0.

Functoids covered in this category:
	Cumulative Average
	Cumulative Minimum

	Cumulative Concatenate
	Cumulative Sum

	Cumulative Maximum
	Common Code

	Cumulative Functoids

	Note: All of the cumulative functoids work in the same way.
They each emit three calls to each of the three C# methods.
For example, the Cumulative Concatenate functoid emits the following:
<xsl:variable name=”var:v1” select=”userC#:InitCumulativeConcat(0)” />
<xsl:for-each select=”/ns0:Employees/Employee”>
 <xsl:variable name=”var:v2” select=”userC#:AddToCumulativeConcat(0,string(@name),”1000”)” />
</xsl:for-each>
<xsl:variable name=”var:v3” select=”userC#:GetCumulativeConcat(0)” />
<xsl:attribute name=”name”>
 <xsl:value-of select=”$var:v3” />
</xsl:attribute>

There’s an initialise call, followed by a loop over a given element/attribute (which a call to the Add method) and then a final call to get the cumulative result.

The first parameter to each of the methods (0 in the above example) is the index of this type of functoid in the map e.g. the second occurrence of the Cumulative Concatenate functoid would use 1 etc.

	
	[bookmark: CumulativeAverage]Cumulative Average
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string InitCumulativeAvg(int index)
{
 if (index >= 0)
 {
 if (index >= myCumulativeAvgArray.Count)
 {
 int I = myCumulativeAvgArray.Count;
 for (; I <= index; i++)
 {
 myCumulativeAvgArray.Add(“”);
 myCumulativeAvgCountArray.Add(0);
 }
 }
 else
 {
 myCumulativeAvgArray[index] = “”;
 myCumulativeAvgCountArray[index] = 0;
 }
 }
 return “”;
}

private System.Collections.ArrayList myCumulativeAvgArray = new System.Collections.ArrayList();
private System.Collections.ArrayList myCumulativeAvgCountArray = new System.Collections.ArrayList();

public string AddToCumulativeAvg(int index, string val, string notused)
{
 if (index < 0 || index >= myCumulativeAvgArray.Count)
 {
 return “”;
 }
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 if (myCumulativeAvgArray[index] == “”)
 {
 myCumulativeAvgArray[index] = d;
 }
 else
 {
 myCumulativeAvgArray[index] = (double)(myCumulativeAvgArray[index]) + d;
 }
 }
 myCumulativeAvgCountArray[index] = (int)(myCumulativeAvgCountArray[index]) + 1;
 return (myCumulativeAvgArray[index] is double) ? ((double)myCumulativeAvgArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

public string GetCumulativeAvg(int index)
{
 if (index < 0 || index >= myCumulativeAvgArray.Count)
 {
 return “”;
 }
 if ((int)(myCumulativeAvgCountArray[index]) == 0 || myCumulativeAvgArray[index] == “”)
 {
 return “”;
 }
 else
 {
 double numer = (double)(myCumulativeAvgArray[index]);
 double denom = Convert.ToDouble((int)(myCumulativeAvgCountArray[index]), System.Globalization.CultureInfo.InvariantCulture);
 double d = numer / denom;
 return d.ToString(System.Globalization.CultureInfo.InvariantCulture);
 }
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: avg(node-set) or avg(value, value, value, …) e.g. avg(/*[local-name()=’number’ and namespace-uri()=’’])
Note: In XSLT 1.0 you can use the Sum() and Count() functions along with the div operator to calculate an average:
sum(/*[local-name()=’number’ and namespace-uri()=’’]) div count(/*[local-name()=’number’ and namespace-uri()=’’])

	

	
	[bookmark: CumulativeConcatenate]Cumulative Concatenate
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string InitCumulativeConcat(int index)
{
 if (index >= 0)
 {
 if (index >= myCumulativeConcatArray.Count)
 {
 int I = myCumulativeConcatArray.Count;
 for (; I <= index; i++)
 {
 myCumulativeConcatArray.Add(“”);
 }
 }
 else
 {
 myCumulativeConcatArray[index] = “”;
 }
 }
 return “”;
}

public System.Collections.ArrayList myCumulativeConcatArray = new System.Collections.ArrayList();

public string AddToCumulativeConcat(int index, string val, string notused)
{
 if (index < 0 || index >= myCumulativeConcatArray.Count)
 {
 return “”;
 }
 myCumulativeConcatArray[index] = (string)(myCumulativeConcatArray[index]) + val;
 return myCumulativeConcatArray[index].ToString();
}

public string GetCumulativeConcat(int index)
{
 if (index < 0 || index >= myCumulativeConcatArray.Count)
 {
 return “”;
 }
 return myCumulativeConcatArray[index].ToString();
}

	
	XSLT 1.0 Equivalent: concat(string, string, string, …)

	
	XSLT 2.0 Equivalent: concat(string, string, string, …)

	

	
	[bookmark: CumulativeMaximum]Cumulative Maximum
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string InitCumulativeMax(int index)
{
 if (index >= 0)
 {
 if (index >= myCumulativeMaxArray.Count)
 {
 int I = myCumulativeMaxArray.Count;
 for (; I <= index; i++)
 {
 myCumulativeMaxArray.Add(“”);
 }
 }
 else
 {
 myCumulativeMaxArray[index] = “”;
 }
 }
 return “”;
}

public System.Collections.ArrayList myCumulativeMaxArray = new System.Collections.ArrayList();

public string AddToCumulativeMax(int index, string val, string notused)
{
 if (index < 0 || index >= myCumulativeMaxArray.Count)
 {
 return “”;
 }
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 if (myCumulativeMaxArray[index] is string || (d > (double)(myCumulativeMaxArray[index])))
 {
 myCumulativeMaxArray[index] = d;
 }
 }
 return (myCumulativeMaxArray[index] is double) ? ((double)myCumulativeMaxArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

public string GetCumulativeMax(int index)
{
 if (index < 0 || index >= myCumulativeMaxArray.Count)
 {
 return “”;
 }
 return (myCumulativeMaxArray[index] is double) ? ((double)myCumulativeMaxArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: max(node-set) or max(value, value, value, …)
Note: in XSLT 1.0 you can achieve the same result through use of Xpath:
e.g. Number[not(parent::Numbers/Number > .)] where <Numbers> and <Number> are the parent and child nodes respectively.

	

	
	[bookmark: CumulativeMinimum]Cumulative Minimum
	

	
	Generates: C#
	Has XSLT Equivalent: in 2.0 only

	
	Emitted Code:
public string InitCumulativeMin(int index)
{
 if (index >= 0)
 {
 if (index >= myCumulativeMinArray.Count)
 {
 int I = myCumulativeMinArray.Count;
 for (; I <= index; i++)
 {
 myCumulativeMinArray.Add(“”);
 }
 }
 else
 {
 myCumulativeMinArray[index] = “”;
 }
 }
 return “”;
}

public System.Collections.ArrayList myCumulativeMinArray = new System.Collections.ArrayList();

public string AddToCumulativeMin(int index, string val, string notused)
{
 if (index < 0 || index >= myCumulativeMinArray.Count)
 {
 return “”;
 }
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 if (myCumulativeMinArray[index] is string || (d < (double)(myCumulativeMinArray[index])))
 {
 myCumulativeMinArray[index] = d;
 }
 }
 return (myCumulativeMinArray[index] is double) ? ((double)myCumulativeMinArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

public string GetCumulativeMin(int index)
{
 if (index < 0 || index >= myCumulativeMinArray.Count)
 {
 return “”;
 }
 return (myCumulativeMinArray[index] is double) ? ((double)myCumulativeMinArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: min(node-set) or min(value, value, value)

	
	Note: in XSLT 1.0 you can achieve the same result through use of Xpath:
e.g. Number[not(parent::Numbers/Number < .)] where <Numbers> and <Number> are the parent and child nodes respectively.

	

	
	[bookmark: CumulativeSum]Cumulative Sum
	

	
	Generates: C#
	Has XSLT Equivalent: in 1.0 and 2.0

	
	Emitted Code:
public string InitCumulativeSum(int index)
{
 if (index >= 0)
 {
 if (index >= myCumulativeSumArray.Count)
 {
 int I = myCumulativeSumArray.Count;
 for (; I <= index; i++)
 {
 myCumulativeSumArray.Add(“”);
 }
 }
 else
 {
 myCumulativeSumArray[index] = “”;
 }
 }
 return “”;
}

public System.Collections.ArrayList myCumulativeSumArray = new System.Collections.ArrayList();

public string AddToCumulativeSum(int index, string val, string notused)
{
 if (index < 0 || index >= myCumulativeSumArray.Count)
 {
 return “”;
 }
 double d = 0;
 if (IsNumeric(val, ref d))
 {
 if (myCumulativeSumArray[index] == “”)
 {
 myCumulativeSumArray[index] = d;
 }
 else
 {
 myCumulativeSumArray[index] = (double)(myCumulativeSumArray[index]) + d;
 }
 }
 return (myCumulativeSumArray[index] is double) ? ((double)myCumulativeSumArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

public string GetCumulativeSum(int index)
{
 if (index < 0 || index >= myCumulativeSumArray.Count)
 {
 return “”;
 }
 return (myCumulativeSumArray[index] is double) ? ((double)myCumulativeSumArray[index]).ToString(System.Globalization.CultureInfo.InvariantCulture) : “”;
}

	
	XSLT 1.0 Equivalent: sum(node-set) or sum(value, value, value, …)

	
	XSLT 2.0 Equivalent: sum(node-set) or sum(value, value, value, …)

	

	
	[bookmark: CumulativeCommonCode]Common Code
(this is common code used by all the cumulative functoids)

	
	
public bool IsNumeric(string val)
{
 if (val == null)
 {
 return false;
 }
 double d = 0;
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

public bool IsNumeric(string val, ref double d)
{
 if (val == null)
 {
 return false;
 }
 return Double.TryParse(val, System.Globalization.NumberStyles.AllowThousands | System.Globalization.NumberStyles.Float, System.Globalization.CultureInfo.InvariantCulture, out d);
}

[bookmark: _Understanding_the_BizTalk_7][bookmark: _Toc447268199]
Understanding the BizTalk Mapper: Part 10 – Database Functoids
This category contains both Database and Cross Referencing Functoids – but they all connect to a database to retrieve/update data.
Unlike all other default functoids, these functoids all call classes/methods in external assemblies – no inline C# is emitted at all. Because of this, this is the only category that emits an ExtensionObjects file listing the strong names of the external assemblies used.

Note: in this category I show some of the source code from the external assemblies as well.

Functoids covered in this category:
	Database Lookup
	Get Common Value

	Error Return
	Remove Application ID

	Format Message
	Set Common ID

	Get Application ID
	Value Extractor

	Get Application Value
	Common Code

	Get Common ID
	

	Database Functoids

	Note: using any of the Database Functoids will cause the following to be emitted as an Extension Object xml file. This is used to tell the XSLT compiler in which assembly it can find the database/cross-referencing lookup methods. All of these functoids use classes in one of two external assemblies. For the database functoids the source code of the class/method is shown.
<ExtensionObject Namespace=”http://schemas.microsoft.com/BizTalk/2003/ScriptNS0” AssemblyName=”Microsoft.BizTalk.BaseFunctoids, Version=3.0.1.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35” ClassName=”Microsoft.BizTalk.BaseFunctoids.FunctoidScripts” />
<ExtensionObject Namespace=”http://schemas.microsoft.com/BizTalk/2003/ScriptNS1” AssemblyName=”Microsoft.BizTalk.CrossReferencing, Version=3.0.1.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35” ClassName=”Microsoft.BizTalk.CrossReferencing.CrossReferencing” />

	
	[bookmark: DatabaseLookup]Database Lookup
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v1” select=”ScriptNS0:DBLookup(0 , string(@name) , string(@id) , “” , “”)” />

public string DBLookup(int index, string value, string connectionString, string table, string column)
{
 DBFunctoidHelper helper = null;
 bool flag = false;
 InitDBFunctoidHelperList();
 if (!myDBFunctoidHelperList.Contains(index))
 {
 helper = new DBFunctoidHelper();
 myDBFunctoidHelperList.Add(index, helper);
 }
 else
 {
 helper = (DBFunctoidHelper) myDBFunctoidHelperList[index];
 }
 try
 {
 if (((helper.ConnectionString == null) || ((helper.ConnectionString != null) && (string.Compare(helper.ConnectionString, connectionString, StringComparison.Ordinal) != 0))) || (helper.Connection.State != ConnectionState.Open))
 {
 flag = true;
 helper.MapValues.Clear();
 helper.Error = “”;
 if (helper.Connection.State == ConnectionState.Open)
 {
 helper.Connection.Close();
 }
 helper.ConnectionString = connectionString;
 helper.Connection.ConnectionString = connectionString;
 helper.Connection.Open();
 }
 if ((flag || (string.Compare(helper.Table, table, StringComparison.Ordinal) != 0)) || (((string.Compare(helper.Column, column, StringComparison.OrdinalIgnoreCase) != 0) || (string.Compare(helper.Value, value, StringComparison.Ordinal) != 0)) || ((helper.Error != null) && (helper.Error.Length > 0))))
 {
 helper.Table = table;
 helper.Column = column;
 helper.Value = value;
 helper.MapValues.Clear();
 helper.Error = “”;
 OleDbCommand command = new OleDbCommand(“SELECT * FROM “ + table + “ WHERE “ + column + “= ?”, helper.Connection);
 OleDbParameter parameter = new OleDbParameter();
 parameter.Value = value;
 command.Parameters.Add(parameter);
 IdataReader reader = command.ExecuteReader();
 if (reader.Read())
 {
 for (int I = 0; I < reader.FieldCount; i++)
 {
 string str = reader.GetName(i).ToLower(CultureInfo.InvariantCulture);
 object obj2 = reader.GetValue(i);
 helper.MapValues[str] = obj2;
 }
 }
 reader.Close();
 }
 }
 catch (OleDbException exception)
 {
 if (exception.Errors.Count > 0)
 {
 helper.Error = exception.Errors[0].Message;
 }
 }
 catch (Exception exception2)
 {
 helper.Error = exception2.Message;
 }
 finally
 {
 if (helper.Connection.State == ConnectionState.Open)
 {
 helper.Connection.Close();
 }
 }
 return index.ToString(CultureInfo.InvariantCulture);
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: ErrorReturn]Error Return
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v2” select=”ScriptNS0:DBErrorExtract(string($var:v1))” />

public string DBErrorExtract(int index)
{
 string error = “”;
 InitDBFunctoidHelperList();
 try
 {
 if (myDBFunctoidHelperList.Contains(index))
 {
 DBFunctoidHelper helper = (DBFunctoidHelper) myDBFunctoidHelperList[index];
 if (helper != null)
 {
 error = helper.Error;
 }
 }
 }
 catch (Exception)
 {
 }
 if (error == null)
 {
 error = “”;
 }
 return error;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: FormatMessage]Format Message
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v9” select=”ScriptNS1:FormatMessage(“” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: GetApplicationID]Get Application ID
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v5” select=”ScriptNS1:GetAppID(“” , “” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: GetApplicationValue]Get Application Value
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v4” select=”ScriptNS1:GetAppValue(“” , “” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: GetCommonID]Get Common ID
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v8” select=”ScriptNS1:GetCommonID(“” , “” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: GetCommonValue]Get Common Value
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v3” select=”ScriptNS1:GetCommonValue(“” , “” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: RemoveApplicationID]Remove Application ID
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v6” select=”ScriptNS1:RemoveAppID(“” , “” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: SetCommonID]Set Common ID
	

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
<xsl:variable name=”var:v7” select=”ScriptNS1:SetCommonID(“” , “” , “”)” />

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	

	
	[bookmark: ValueExtractor]Value Extractor

	
	Generates: XSLT calling a DLL
	Has XSLT Equivalent: No

	
	Emitted Code:
xsl:variable name=”var:v2” select=”ScriptNS0:DBValueExtract(string($var:v1) , string(Field/text()))” />

public string DBValueExtract(int index, string columnName)
{
 string str = “”;
 InitDBFunctoidHelperList();
 if (myDBFunctoidHelperList.Contains(index))
 {
 DBFunctoidHelper helper = (DBFunctoidHelper) myDBFunctoidHelperList[index];
 columnName = columnName.ToLower(CultureInfo.InvariantCulture);
 object obj2 = helper.MapValues[columnName];
 if (obj2 != null)
 {
 str = obj2.ToString();
 }
 }
 return str;
}

	
	XSLT 1.0 Equivalent: (none)

	
	XSLT 2.0 Equivalent: (none)

	
	

	
	[bookmark: DatabaseCommonCode]Common Code
(this is common code used by all the database functoids)

	
	<xsl:variable name=”var:v3” select=”ScriptNS0:DBLookupShutdown()” />

public string DBLookupShutdown()
{
 return string.Empty;
}

private class DBFunctoidHelper
{
 private string column;
 private OleDbConnection conn = new OleDbConnection();
 private string connectionString;
 private string error;
 private Hashtable mapValues = new Hashtable();
 private string table;
 private string value;

 public string Column
 {
 get
 {
 return this.column;
 }
 set
 {
 this.column = value;
 }
 }

 public OleDbConnection Connection
 {
 get
 {
 return this.conn;
 }
 }

 public string ConnectionString
 {
 get
 {
 return this.connectionString;
 }
 set
 {
 this.connectionString = value;
 }
 }

 public string Error
 {
 get
 {
 return this.error;
 }
 set
 {
 this.error = value;
 }
 }

 public Hashtable MapValues
 {
 get
 {
 return this.mapValues;
 }
 }

 public string Table
 {
 get
 {
 return this.table;
 }
 set
 {
 this.table = value;
 }
 }

 public string Value
 {
 get
 {
 return this.value;
 }
 set
 {
 this.value = value;
 }
 }
}

[bookmark: _Understanding_the_BizTalk_8][bookmark: _Toc447268200]
Understanding the BizTalk Mapper: Part 11 – Advanced Functoids
Interestingly, all of the advanced functoids emit XSLT. No C# in sight at all.
The reason for this is that the functoids in this category all perform operations best suited to trees of data i.e. XML.
The only way to do this in C# would be to load the data into a DOM (i.e. XmlDocument) or XmlReader, or treat the XML as string data and search for tokens.

Note: this category was the one that actually started this series – I felt that if you knew the XSLT emitted by these functoids it would help understand when to use them, and what you can achieve with them.

Functoids covered in this category:
	Assert
	Record Count

	Index
	Scripting

	Iteration
	Table Looping

	Looping
	Table Extractor

	Mass Copy
	Value Mapping

	Nil Value
	Value Mapping (Flattening)

	Advanced Functoids

	
	[bookmark: Assert]Assert
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:if test=”(value-test)=’false’”>
	<xsl:message terminate=”yes”>
	 <xsl:value-of select=”(value-error)” />
	</xsl:message>
</xsl:if>
<xsl:if test=”(value-test)=’true’”>
	<xsl:variable name=”var:v1” select=”(value-out)” />
	<xsl:value-of select=”$var:v1” />
</xsl:if>
Note: (value-test) is the element/attribute/value tested for a true/false value.
(value-error) is the element/attribute/value used as the error text.
(value-out) is the element/attribute/value emitted if there is no error.

	

	
	[bookmark: Index]Index
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:variable name=”var:v1” select=”./(node)[index][index][...]/(element)/(attribute)” />
for example:
<xsl:variable name=”var:v1” select=”./Employee[2]/@id” />
Note: in the above code, Employee is the repeating node, 2 is the index we want to use, and @id is an attribute of the Employee element we wish to retrieve.
This functoid uses standard XSLT indexing to build up an XSLT select query.
The sample code shown above is a very simple example.

	

	
	[bookmark: Iteration]Iteration
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:variable name=”var:v1” select=”position()” />

	
	Note: the functoid places the above code under the relevant element we’re getting the iteration (index) of.
The variable is then used to emit the index at the appropriate place.

	

	
	[bookmark: Looping]Looping
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:for-each select=”(node)”>
</xsl:for-each>
Note: where (node) is whatever input node is being looped-over.
The Looping functoid is unique in that if you link from a repeating node in the source tree, then the Mapper will implicitly insert a looping functoid (although no functoid shape will be visible on the map).
Understanding how to use the looping functoid is a vital part of creating advanced maps (e.g. concatenating multiple messages into one, or flattening loops).
If you have more than one input element into the loop, then a for-each loop is created over each input element, and one output element is created for each input element. This is a common way of concatenating (aggregating) two separate messages.

	

	
	[bookmark: MassCopy]Mass Copy
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:copy-of select=”./@*” />
<xsl:copy-of select=”./*” />
Note: the functoid places the above code under the appropriate destination element, and the “.” indicates the current element being processed from the source message.
As an example:
<ns0:Employees>
 <xsl:for-each select=”Employee”>
 <Employee>
 <xsl:copy-of select=”./@*” />
 <xsl:copy-of select=”./*” />
 </Employee>
 </xsl:for-each>
</ns0:Employees>

	

	
	[bookmark: NilValue]Nil Value
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:attribute name=”xsi:nil”>
 <xsl:value-of select=”’true’” />
</xsl:attribute>
Note: the functoid places the above code under the appropriate element in the destination message.
If a parameter is supplied to the functoid, then the above code is wrapped in an <xsl:if> node.
For example:
<xsl:if test=”@name=’true’”>
<Field>
 <xsl:attribute name=”xsi:nil”>
 <xsl:value-of select=”’true’” />
 </xsl:attribute>
</Field>
</xsl:if>

	

	
	[bookmark: RecordCount]Record Count
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:variable name=”var:v1” select=”count(node-set)” />
Note: (node-set) is an element/record which repeats.
The variable is then used in a value-of statement.
For example:
<xsl:variable name=”var:v1” select=”count(/ns0:Employees/Employee)” />
<ns0:Employees>
 <Employee>
 <xsl:attribute name=”id”>
 <xsl:value-of select=”$var:v1” />
 </xsl:attribute>
 </Employee>
</ns0:Employees>

	

	
	[bookmark: Scripting]Scripting
	

	
	Generates: XSLT/Inline Script
	Has XSLT Equivalent: N/A

	
	Emitted Code:
External Assembly
Emits XSLT to call the appropriate method, along with an Extension Object file containing the strong name of the assembly to use.
For example (this example passes in two constant parameters to the method):
<xsl:variable name=”var:v1” select=”ScriptNS0:AddComponent(‘1’, ‘2’)” />
<xsl:value-of select=”$var:v1” />

<ExtensionObjects>
 <ExtensionObject Namespace=”http://schemas.microsoft.com/BizTalk/2003/ScriptNS0” AssemblyName=”Microsoft.BizTalk.DefaultPipelines, Version=3.0.1.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35” ClassName=”Microsoft.BizTalk.DefaultPipelines.PassThruReceive” />
</ExtensionObjects>

Inline C#
Inline Jscript .NET
Inline Visual Basic .NET
Emits a call to the method, and wraps the actual code in a CDATA block.
For example:
<xsl:variable name=”var:v1” select=”userC#:MyConcat’1’, ‘2’)” />
<xsl:value-of select=”$var:v1” />

 <msxsl:script language=”C#” implements-prefix=”userC#”><![CDATA[
///*Uncomment the following code for a sample Inline C# function
//that concatenates two inputs. Change the number of parameters of
//this function to be equal to the number of inputs connected to this functoid.*/

public string MyConcat(string param1, string param2)
{
	return param1+param2;
}
]]>
 </msxsl:script>

Inline XSLT
Emits the XSLT as entered at the appropriate place in the destination tree.

Inline XSLT Call Template
Emits the template and a call to the template.
For example:
<xsl:call-template name=”MyXsltConcatTemplate”>
	<xsl:with-param name=”param1” select=”’1’” />
	<xsl:with-param name=”param2” select=”’2’” />
</xsl:call-template>

<xsl:template name=”MyXsltConcatTemplate”>
	<xsl:param name=”param1” />
	<xsl:param name=”param2” />
	<xsl:element name=”field”>
	 <xsl:value-of select=”$param1” />
	 <xsl:value-of select=”$param2” />
	</xsl:element>
</xsl:template>

	

	
	[bookmark: TableLooping]Table Looping
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
(auto generated)
Note: the Table Looping functoid (along with the Table Extractor functoid) builds custom XSLT in the destination XSLT. This custom XSLT will comprise a number of for-each loops (for the repeating element specified as the first parameter to the Table Looping functoid), and then a number of structures, one per row configured in the functoid.
If the Gated property is set, then each structure is surrounded by an if statement.

This is an example of the output generated by use of the Table Looping / Table Extractor functoids.
In this sample, we’re filtering the input list, so that the output only contains Employee nodes with a department value of ‘Managers’.
In this example, the Table Looping functoid has the source Employee element as input, with number of columns set to 5, followed by a Logical Equal functoid (true if @department equals ‘managers’, followed by a single constants (Management) and then three attributes (@name, @id, @department).

The sample XML used as input was:
<ns0:Employees xmlns:ns0=”http://TestMaps.Employees”>
 <Employee name=”Mary Briggs” id=”1” department=”Managers” />
 <Employee name=”Sam Gamgee” id=”5” department=”Staff” />
 <Employee name=”Frodo Smith” id=”20” department=”Staff” />
</ns0:Employees>

The looping functoid was then setup to generate one record (row) per input element, with the Gated property set on the first column the Logical Equal functoid).
Four Table Extractor functoids were setup, with each one connecting to one of the four attributes on the output message (@type, @name, @id, @department).
This is the XSLT generated by these functoids:
<xsl:template match=”/s0:Employees”>
<ns0:Employees>
 <xsl:for-each select=”Employee”>
 <xsl:variable name=”var:v1” select=”userCSharp:LogicalEq(string(@department), ‘Managers’)” />
 <xsl:if test=”$var:v1”>
 <xsl:variable name=”var:v2” select=”’Management’” />
 <xsl:variable name=”var:v3” select=”@name” />
 <xsl:variable name=”var:v4” select=”@id” />
 <xsl:variable name=”var:v5” select=”@department” />
 <Employee>
 <xsl:attribute name=”type”>
 <xsl:value-of select=”$var:v2” />
 </xsl:attribute>
 <xsl:attribute name=”name”>
 <xsl:value-of select=”$var:v3” />
 </xsl:attribute>
 <xsl:attribute name=”id”>
 <xsl:value-of select=”$var:v4” />
 </xsl:attribute>
 <xsl:attribute name=”department”>
 <xsl:value-of select=”$var:v5” />
 </xsl:attribute>
 </Employee>
 </xsl:if>
 </xsl:for-each>
</ns0:Employees>
</xsl:template>

	

	
	[bookmark: TableExtractor]Table Extractor
	

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
(see the Table Looping functoid above)

	

	
	[bookmark: ValueMapping]Value Mapping

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code:
<xsl:for-each select=”(source element)”>
<(destination element parent)>
 <xsl:if test=”(node-test)=’true’”>
 <xsl:variable name=”var:v1” select=”@id” />
 <(destination element)>
 <xsl:value-of select=”$var:v1” />
 </(destination element)>
 </xsl :if>
</(destination element parent)>
</xsl:for-each>
Note: if the Value Mapping functoid is used with a repeating source element, then it will place a for-each element outside of the parent destination element.
If the source element is not repeating, then the functoid emits a value-of statement, with an optional if statement (if an element/attribute is used as the first parameter rather than a constant).

For example, if the input message was:
<ns0:Employees xmlns:ns0=”http://TestMaps.Employees”>
 <Employee name=”Mary Briggs” id=”1” department=”Managers” />
 <Employee name=”Sam Gamgee” id=”5” department=”Staff” />
 <Employee name=”Frodo Smith” id=”20” department=”Staff” />
</ns0:Employees>
and the source/destination schemas were the schema used for the above message, and the Value Mapping functoid linked the id attribute to the Field element, then the following XSLT would be generated:
<ns0:Employees>
 <xsl:for-each select=”Employee”>
 <xsl:variable name=”var:v1” select=”@id” />
 <Employee>
 <Field>
 <xsl:value-of select=”$var:v1” />
 </Field>
 </Employee>
 </xsl:for-each>
</ns0:Employees>

which would generate the following output:
<ns0:Employees xmlns:ns0=”http://TestMaps.Employees”>
	<Employee>
		 <Field>1</Field>
	</Employee>
	<Employee>
		 <Field>5</Field>
	</Employee>
	<Employee>
		 <Field>20</Field>
	</Employee>
</ns0:Employees>

	
	

	
	[bookmark: ValueMappingFlattening]Value Mapping (Flattening)

	
	Generates: XSLT
	Has XSLT Equivalent: N/A

	
	Emitted Code :
<(destination element parent)>
<xsl:for-each select=”(source element)”>
 <xsl:if test=”(node-test)=’true’”>
 <xsl:variable name=”var:v1” select=”(source-value)” />
 <(destination element)>
 <xsl:value-of select=”$var:v1” />
 </(destination element)>
 </xsl:if>
</xsl:for-each>
</(destination element parent)>
Note: the Value Mapping (Flattening) functoid constructs a for-each loop around the source element, and outputs one instance of the destination element per instance of the source element.
For example, if the input message was:
<ns0:Employees xmlns:ns0=”http://TestMaps.Employees”>
 <Employee name=”name_0” id=”1” department=”department_2” />
 <Employee name=”name_0” id=”5” department=”department_2” />
 <Employee name=”name_0” id=”20” department=”department_2” />
</ns0:Employees>
and the source/destination schemas were the schema used for the above message, and the Value Mapping (Flattening) functoid linked the id attribute to the Field element, then the following XSLT would be generated:
<ns0:Employees>
 <Employee>
 <xsl:for-each select=”Employee”>
 <xsl:variable name=”var:v1” select=”@id” />
 <Field>
 <xsl:value-of select=”$var:v1” />
 </Field>
 </xsl:for-each>
 </Employee>
</ns0:Employees>

which would generate the following output:
<ns0:Employees xmlns:ns0=”http://TestMaps.Employees”>
	<Employee>
		<Field>1</Field>
		<Field>5</Field>
		<Field>20</Field>
	</Employee>
</ns0:Employees>

	
	

[bookmark: _Toc447268201]
Understanding the BizTalk Mapper: Part 12 – Performance and Maintainability
In this section:
Performance
	Summary of Tests
	Testing performance in isolation (non-BizTalk)
	Performance Test Results
	Measuring Memory Usage in BizTalk
	BizTalk Memory Test Results
	Byte Arrays
	Analysing the performance results
Maintainability
	External XSLT
	Serializable Classes
	Why is it so difficult to edit code in the Script functoid?
	Documentation

Any large BizTalk project will likely have had the inevitable conversations about performance and maintainability: will it be fast/sustainable enough, and will the tech support team (or whoever looks after the code once the developers have finished) be able to maintain it?

In this post I want to look at the performance of the Mapper, and also look at how maintainable maps are generally.
In order to do this, I want look at the different options you have for executing XSLT with the Mapper, and compare this to the most common non-Mapper mechanism for performing transformation: using serializable classes.

In BizTalk, your options for transformations using the Mapper are:
· Built-in functoids
· Inline XSLT script
· Inline C# / VB.NET / Jscript.NET
· Classes/methods in external assemblies
· Custom functoids
· External XSLT file

Normally you’d use a combination of these in a complex BizTalk solution.

So how do you decide which to use?
Which gives you the best performance?
Which option(s) are the easiest to maintain?

The answer is: it depends!
In this section I’m going to try and give you some hard data you can use to try and answer these questions. In the next post, I’ll try and answer the questions.
[bookmark: Post12Perf][bookmark: _Toc447268202]Performance
Performance is a very subjective subject. You could spend weeks getting your maps to execute in under 10ms, but if your performance requirement is “anything less than 100ms” then why bother?
What’s more important is that performance is “good enough” and is sustainable.
Sustainable performance is the key – its one thing to be able to perform a single transformation in less than 10ms, but what about performing 40 simultaneous transformations continuously for over an hour?
And what about the memory footprint?
When we talk about performance, we also need to look at memory/resource usage: If you have a very fast system that for each transformation uses 1MB memory, then at a certain point under sustained load your memory usage will start to affect performance as memory is paged out to disk (assuming that garbage collection can’t keep up with the number of transformations you’re performing).

In order to find out the performance and memory footprints of the various options, I put together some tests.
I ran two suites of tests:
· Using a stand-alone test harness with the XslTransform class to perform transformation in isolation (this gives the comparative performance)
· Using a BizTalk application to measure memory usage (this gives the comparative memory usage)
[bookmark: Post12SummaryOfTests][bookmark: _Toc447268203]Summary of Tests
I simplified the six options above into four separate XSLT tests, and then added two tests involving serializable classes for comparison:
1. Standard Map
A map using default built-in functoids, with a mix of functoids that emit XSLT and functoids that emit C#
2. Map using external XSLT
A map which used an external XSLT file consisting of pure XSLT i.e. no external assemblies or inline script
3. Map using inline C#
A map using inline C# code in a Script functoid
4. Map using external assembly
A map using an external assembly via a Script functoid
5. Transformation using Classes
De-serializing the input message into a class, transforming to a new class, and serializing the class back into the output message
6. Transformation using classes and serializers
Same as 5. Above but using the sgen.exe tool to pre-generate a serialization class

My test scenario was: Transforming a message containing 20 employee records into a new message which contained separate Manager and Staff records:
i.e. this:
[image: Φ°]

becomes this:

[image: Φ°]

Each of the maps performed the transformation in the same way, as much as was possible.
[bookmark: Post12TestingInIsolation][bookmark: _Toc447268204]Testing performance in isolation (non-BizTalk)
For the XSLT tests, I tested using both the XslTransform class (used by BizTalk) and the newer XslCompiledTransform class (for comparison).
For both of these class tests I used static and non-static instances of the classes:
· In the static test a transform class was created once and then re-used for each iteration
· In the non-static test, a new transform class was created for each iteration

I ran each test twice: once with 20 iterations, and once with 500 iterations.

I also measured the amount of memory in use before and after each test – from this I calculated a rough “memory used” for each test (this is before garbage collection kicked in).

For each test I show:
1. Total
This is the total time (in ms) that the test took to run
2. Average
This is the average time for each iteration
3. Average without first
This is the average time without the first iteration
4. Average setup
This is the average time it took to create the transform object in each iteration (will be 0 for the static tests as creation of transform is performed once and not included in the timings)
5. Average transform
This is the average time it took to perform the transformation
6. Memory Used
This is the amount of memory used to perform the entire test
[bookmark: Post12PerfTestResults][bookmark: _Toc447268205]Performance Test Results
The results of the 500 iteration tests are:
	
	Standard Map
	Map with External Assembly
	Map with Inline Script
	Map with External XSLT
	Class Transform
	Class Transform with Serializer

	Iterations
	500
	500
	500
	500
	500
	500

	XslTransform – NonStatic
	
	
	
	
	
	

	 Total (ms)
	82402
	78815
	79507
	1622
	1749
	728

	 Average (ms)
	164
	157
	159
	3
	3
	1

	 Average without first (ms)
	164
	157
	158
	3
	2
	1

	 Average setup (ms)
	151
	151
	152
	1
	1
	0

	 Average transform (ms)
	12
	5
	5
	1
	1
	1

	 Memory Used
	504MB
	452MB
	456MB
	62MB
	90MB
	86MB

	XslTransform – Static
	
	
	
	
	
	

	 Total (ms)
	4392
	2234
	1564
	720
	769
	735

	 Average (ms)
	8
	4
	3
	1
	1
	1

	 Average without first (ms)
	8
	4
	3
	1
	1
	1

	 Average setup (ms)
	0
	0
	0
	0
	0
	0

	 Average transform (ms)
	8
	4
	3
	1
	1
	1

	 Memory Used
	64MB
	40MB
	40MB
	30MB
	88MB
	88MB

	XslCompiledTransform – NonStatic
	
	
	
	
	
	

	 Total (ms)
	101214
	88181
	89608
	16325
	
	

	 Average (ms)
	202
	176
	179
	32
	
	

	 Average without first (ms)
	202
	176
	179
	32
	
	

	 Average setup (ms)
	156
	145
	147
	3
	
	

	 Average transform (ms)
	45
	30
	30
	28
	
	

	 Memory Used
	192MB
	141MB
	145MB
	82MB
	
	

	XslCompiledTransform – Static
	
	
	
	
	
	

	 Total (ms)
	95
	131
	70
	55
	
	

	 Average (ms)
	0
	0
	0
	0
	
	

	 Average without first (ms)
	0
	0
	0
	0
	
	

	 Average setup (ms)
	0
	0
	0
	0
	
	

	 Average transform (ms)
	0
	0
	0
	0
	
	

	 Memory Used
	14MB
	15MB
	13MB
	13MB
	
	

(the lowest result on each row is highlighted in green)

And for comparison, the results from the 20 iteration tests:
	
	Standard Map
	Map with External Assembly
	Map with Inline Script
	Map with External XSLT
	Class Transform
	Class Transform with Serializer

	Iterations
	20
	20
	20
	20
	20
	20

	XslTransform – NonStatic
	
	
	
	
	
	

	 Total (ms)
	3820
	3931
	3718
	78
	1213
	82

	 Average (ms)
	191
	196
	185
	3
	60
	4

	 Average without first (ms)
	171
	194
	184
	3
	4
	1

	 Average setup (ms)
	175
	189
	178
	1
	56
	1

	 Average transform (ms)
	15
	7
	6
	1
	4
	2

	 Memory Used
	20MB
	18MB
	17MB
	2MB
	4MB
	3MB

	XslTransform – Static
	
	
	
	
	
	

	 Total (ms)
	169
	100
	66
	29
	122
	83

	 Average (ms)
	8
	5
	3
	1
	6
	4

	 Average without first (ms)
	8
	4
	3
	1
	2
	1

	 Average setup (ms)
	0
	0
	0
	0
	2
	1

	 Average transform (ms)
	8
	4
	3
	1
	3
	2

	 Memory Used
	4MB
	1MB
	1MB
	1MB
	3MB
	3MB

	XslCompiledTransform – NonStatic
	
	
	
	
	
	

	 Total (ms)
	4628
	3758
	5094
	1190
	
	

	 Average (ms)
	231
	187
	254
	59
	
	

	 Average without first (ms)
	224
	183
	254
	50
	
	

	 Average setup (ms)
	180
	154
	211
	11
	
	

	 Average transform (ms)
	50
	32
	42
	48
	
	

	 Memory Used
	8MB
	6MB
	6MB
	3MB
	
	

	XslCompiledTransform – Static
	
	
	
	
	
	

	 Total (ms)
	46
	39
	67
	81
	
	

	 Average (ms)
	2
	1
	3
	4
	
	

	 Average without first (ms)
	0
	0
	1
	1
	
	

	 Average setup (ms)
	0
	0
	0
	0
	
	

	 Average transform (ms)
	2
	1
	3
	4
	
	

	 Memory Used
	642KB
	647KB
	583KB
	542KB
	
	

(the lowest result on each row is highlighted in green)
[bookmark: Post12MeasuringMemory][bookmark: _Toc447268206]Measuring Memory Usage in BizTalk
Although the Memory Used amount from the performance tests was useful, I wanted to know exactly how much memory BizTalk used for performing transformations – and what objects were in memory.
In order to measure this I used SciTech Software’s .NET Memory Profiler.
This tool attaches to the BizTalk service (BTSNTSvc.exe) and can create a snapshot of all the object instances currently in use, including how many there are and how much memory they’re using.

I created a BizTalk application which contained a separate map for each of the tests above, and created orchestrations to execute the maps (and to call the C# code to perform the transform using the classes).

I performed a memory snapshot before and after running the orchestrations, and restarted the BizTalk service between each test.

I ran each test twice: once with a single message, and once with 50 messages.

For each test I show:
1. Byte[] Instances
This is the count of Byte arrays in use (the relevance of Byte arrays is explained below)
2. Byte[] Instances Size (MB)
The is the total size of all Byte arrays (i.e. the size of all the data they contain)
3. Total Instances
The is the count of all .NET objects in use
4. Total Instances Size(MB)
This is the total size of all .NET objects in use
Note that any sizes measured are after garbage collection has occurred i.e. these are objects which are still classed as being in-use.
[bookmark: Post12MemoryTestResults][bookmark: _Toc447268207]BizTalk Memory Test Results
The results I measured were:
Single Message:
	Test – 1 Iteration
	Byte[] Instances
	Byte[] Instances Size (MB)
	Total Instances
	Total Instances Size (MB)

	Standard
	5,652
	0.63
	17,277
	1.78

	External XSLT
	5,752
	0.59
	19,038
	2.11

	Inline Script
	5,763
	0.63
	20,522
	2.23

	Referenced Assembly
	5,757
	1.25
	19,897
	2.42

	Class
	30
	0.03
	7,476
	0.74

(the lowest result in each column is highlighted in green)

50 Messages:
	Test – 50 Iterations
	Byte[] Instances
	Byte[] Instances Size (MB)
	Total Instances
	Total Instances Size (MB)

	Standard
	146
	1.63
	18,354
	3.24

	External XSLT
	126
	0.80
	14,359
	1.87

	Inline Script
	5,780
	1.89
	22,590
	3.13

	Referenced Assembly
	5,757
	1.36
	20,100
	3.00

	Class
	146
	0.85
	14,202
	1.81

(the lowest result in each column is highlighted in green)
[bookmark: Post12ByteArrays][bookmark: _Toc447268208]Byte Arrays
I can let Microsoft explain this in their own words (this is taken from a knowledge base article here):

The System.Policy.Security.Evidence object is often used in transforms and can consume a lot of memory. Whenever a map contains a scripting functoid that uses inline C# (or any other inline language), the assembly is created in memory. The System.Policy.Security.Evidence object uses the object of the actual calling assembly. This situation creates a rooted object that is not deleted until the BizTalk service is restarted.

Most of the default BizTalk functoids are implemented as inline script. These items can cause System.Byte[] objects to collect in memory. To minimize memory consumption, we recommend that you put any map that uses these functoids into a small assembly. Then, reference that assembly. Use the chart below to determine which functoids use inline script and which functoids do not use inline script.

In the second column, “Yes” means that this functoid is implemented as inline script, and that it will cause System.Byte[] objects to collect in memory. “No” means that this functoid is not implemented as inline script, and that it will not cause System.Byte[] objects to collect in memory.
	Functoids
	Inline script?

	All String Functoids
	Yes

	All Mathematical Functoids
	Yes

	All Logical Functoids except IsNil
	Yes

	Logical IsNil Functoid
	No

	All Date/Time Functoids
	Yes

	All Conversion Functoids
	Yes

	All Scientific Functoids
	Yes

	All Cumulative Functoids
	Yes

	All Database Functoids
	No

	All Advanced Functoids (apart from Script functoids using Inline C#/VB/Jscript)
	No

Basically what they’re saying is: whenever you use the default functoids, or inline code (i.e. C# or any other .NET language) the assembly containing the map is used as evidence to the XslTransform class to ensure that it’s safe to use scripts. And this assembly is loaded into the appropriate AppDomain and kept there. In fact, it’s loaded in as a byte array (byte[]).
Assemblies created by compiling inline script in an XSLT are temporary assemblies and are loaded into the appropriate AppDomain – they will remain in memory until the AppDomain is unloaded i.e. the BizTalk Host Instance is restarted.

So if you keep all your maps, orchestrations, schemas, etc in one big assembly, then that assembly will stay loaded in memory until the BizTalk Host Instance that loaded it is restarted.
Solution? Keep your maps (especially maps using inline C#) in a separate project/assembly – and try and keep that assembly as small as possible!
[bookmark: Post12AnalysingResults][bookmark: _Toc447268209]Analysing the performance results
The results shouldn’t really come as any surprise.
What they say in a nutshell is: pure XSLT is much faster than XSLT which uses inline script or referenced assemblies. How much faster? Well, my tests show an average 5500% speed increase over using the default functoids (i.e. 55 times faster)!
Additionally, using pure XSLT uses 1/8 the memory.
Of course, your mileage will vary.

What’s interesting though is how fast using serializable classes is i.e. de-serializing a message into a class, performing operations to create a new class, and then serializing the new class into a message.
When used with a pre-generated serialization assembly, this mechanism chases closely behind using pure XSLT (and actually beat it in one of the tests).
[bookmark: Post12Maintainability][bookmark: _Toc447268210]Maintainability
One of BizTalk’s trump cards is the BizTalk Mapper: you can create maps which can be easily maintained – what’s more, because the Mapper is a visual tool you can see at a glance how the mapping works.
At least, that’s the theory.
If you have a relatively simple map which uses no script functoids, and has less than, say, 50 connections then Yes, I’d say this was true: it’s easy to see what the map does, and probably easy to maintain it.

But if you have a map with 1000 connections, or with a whole smattering of Script functoids (or a bird’s nest of Logical functoids) then No, I don’t think it’s easy to see what the map does or to maintain it.

At what point do you have to admit defeat with a Map and say that it’s got as bit too complex? Or that the next developer to come along will have problems maintaining it?
In that case, would you be better off using external XSLT or serializable classes?
[bookmark: Post12ExternalXSLT][bookmark: _Toc447268211]External XSLT
One of the main complaints I hear about using external XSLT with the Mapper is that it’s difficult to maintain. This can be true – if your editing tool is notepad! But there are great tools around for maintaining XSLT – have a look at Altova’s MapForce for an example of one.
The other complaint is that XSLT is difficult, or hard to learn. Well, so is C# if you’ve never used it before.
Go buy a book on it, or do a course!

Truth be told, if you work for a company which uses XSLT for other projects, then you’re more likely to find support for using it as external XSLT in BizTalk.
Some companies have teams in IT which do nothing but create XSLT.

My point here is that although there’s a myth that external XSLT is hard to maintain, it’s a lot easier to maintain than a complicated map. And if you use the right tool, you can get a graphical view of what it does as well.
[bookmark: Post12SerialisableClasses][bookmark: _Toc447268212]Serializable Classes
In my experience, it’s very very common for developers to create a whole slew of transform and utility classes for handling transformations.
Sometimes this is because it’s the best way to do it.
Other times it’s because they simply didn’t know how to achieve something in the Mapper.
One of the best features of BizTalk (the ability to call out to C# classes/methods from an orchestration or map) can also be its worst: Just because you *can* create C# code, doesn’t mean that you *should*.

Maintaining poorly written C# code is a nightmare.
So if you’re using serializable classes to perform transformations make sure they’re well written and well documented – but most importantly: understand *why* you’re using them over XSLT.
[bookmark: Post12ScriptFunctoidEditingDifficult][bookmark: _Toc447268213]Why is it so difficult to edit code in the Script functoid?
Ever wondered why you can’t resize the Script functoid code window? Or do a Ctrl-A to select all the code in it? It turns out there is actually a reason for it…

Scott Woodgate (former Product Manager for BizTalk) had this to say…
The article is correct when it points out we discourage the use of .NET objects directly inside the map. While this is possible, we encourage good developer design which is encapsulating code in external assemblies. This turns out to be much better because you have a single assembly with code shared across multiple maps that can be versioned once and managed more easily

Unfortunately, this restriction also means that it’s difficult to use inline XSLT, which is a shame.
[bookmark: Post12Documentation][bookmark: _Toc447268214]Documentation
You can’t get away from the fact that code that is easy to maintain is either self-documenting, or is accompanied by excellent documentation.
Regardless if you use maps, external XSLT, or serializable classes you should really document your transforms: explain what they do, how they do it, why they do it – and most importantly, give some context: explain why you chose to do it that particular way.
A developer who has to maintain your code in 2 years’ time might not have your background of development and political issues to understand why you made your choices.

The next post is going to look at the performance/maintainability of the different transformation options and attempt to help you to decide when to use which option.

[bookmark: _Toc447268215]
Understanding the BizTalk Mapper: Part 13 – Is the Mapper the best choice for Transformation in BizTalk?
In this section:
Transformation Choices
BizTalk Mapper
Custom XSLT with the BizTalk Mapper
External Transform Engine
Transformation in code
Which one should you use?
[bookmark: Part13TransformChoices][bookmark: _Toc447268216]Transformation Choices
When performing transformations in BizTalk, you have four choices (that I can think of):

1. Using the BizTalk Mapper
2. Using a custom XSLT file with the BizTalk Mapper
3. Using a separate transformation engine (called from code)
4. Performing transformations in code

Each of these offers their own benefits depending on your requirements.
Normally your choice will depend on 3 factors:
· Performance
· Complexity
· Maintainability

Generally, you will get one (or two) of these, at the cost of the third.
For simple transformations, you can get all three with the Mapper using the built-in functoids.

In order to decide if the BizTalk Mapper is the best choice, we have to look at these alternatives and compare them.
[bookmark: Part13BizTalkMapper][bookmark: _Toc447268217]BizTalk Mapper
The BizTalk Mapper is the de-facto standard for transformations in BizTalk.
With this option I’m including maps created via the Mapper visual designer – I’m not including maps which reference external XSLT.
Maps created with the designer include those which use:
· No functoids, or only functoids which emit XSLT
· Default functoids
· Custom functoids / Script functoids with referenced assemblies
· Script functoids with inline C#/VB/Jscript
· Script functoids with inline XSLT

If you’re creating a map which is relatively simple (e.g. has less than 40 or so links, and less than 20 functoids) then you could argue that the map is easy to follow and maintain.
If your map has no functoids, or only uses functoids which emit XSLT, then your map will likely perform very well.
If you’re only processing a small number of messages (e.g. 20 an hour) then performance won’t be that important to you.
However, the BizTalk Mapper isn’t really suited where you have hundreds of links/functoids, or in situations where you need the best performance possible (e.g. thousands of messages per hour).
If you’re not sure if the Mapper will give you the performance you need, you’re better off doing a quick proof-of-concept with a realistic map and seeing what performance you can get.

Pros:
· Can use it with Receive/Send Ports
· Easiest to start using
Cons:
· Easy to create complex/slow maps
· Difficult to do advanced mapping
· Uses the .NET 1.x XslTransform class As of BizTalk 2013, now has support for XslCompiledTransform class for maps
· Standard functoids use inline C# code

Note: As of BizTalk 2013, you can now choose to use XslCompiledTransform for your maps. When using XslCompiledTransform, using inline C# (or whatever language) in a map will normally be faster than using an external assembly i.e. using ExtensionObjects.
The reason for this is that with inline script (i.e. using the <msxsl:script> tag) the compiler can generate direct calls to the compiled script assembly from the transform assembly, whereas with external assemblies, reflection needs to be used at runtime to invoke a call. See here for more information on this.
[bookmark: Part13CustomXSLT][bookmark: _Toc447268218]Custom XSLT with the BizTalk Mapper
Here we're talking about using the Custom XSL Path property of a BizTalk Map and specifying an external XSLT file. The contents of this XSLT file will be compiled into the assembly containing the map.
Note: bear in mind that you can't use <xsl:include> or <xsl:import> tags in your external XSLT – the external XSLT file needs to be complete. For more information on this, see here.

The advantage of external XSLT is that it is very fast – usually faster than using functoids in a map (depending on the functoids and the XSLT obviously). In you refer to the speed tests in my previous post, you'll see that in my tests, external XSLT was 55 time faster than using inline scripts/default functoids.
If you're au fait with XSLT and your project has the ability to support external XSLT then this is the best option to use in my mind. If you use a good external XSLT editor (e.g. Altova's MapForce) then the issues of maintenance and being able to visualise the map should disappear.

However, using XSLT can be tricky: because the Mapper uses XSLT v1.0 you're limited in certain areas (such as string handling, date handling, and mathematical functions). Additionally, using inherited types can be tricky if you've never used them before in XSLT.
In these cases, you might be better performing your transformations in code.

Pros:
· Can use it with Receive/Send Ports
· Transforms are fast
· XSLT is the best choice for XML structures
Cons:
· Need good understanding of XSLT
· Can be difficult to maintain if not using a good XSLT editor
· Uses the .NET 1.x XslTransform class As of BizTalk 2013, now has support for XslCompiledTransform class for maps
[bookmark: Part13ExternalEngine][bookmark: _Toc447268219]External Transform Engine
Because of BizTalk's ability to execute external code from an orchestration, you can perform transformations via an external engine.
For example you might choose to use an XSLT v2.0 engine such as SAXONto increase the performance or your existing maps.
In this case, you could even use your existing BTM maps if you wanted (by accessing the XSLT from the compiled map class).

Using an external transformation engine makes sense if you must use XSLT v2.0 (or are sharing XSLT v2.0 maps with other projects), or if an external engine gives you a required feature.

However you can only use these engines from an orchestration (i.e. can't use them with receive/send ports), and any performance related caching of classes will be up to you to e.g. caching one instance of a compiled transform for an orchestration's AppDomain.

However you can get substantial performance increases if you use the right engine and caching strategy.
Plus if your company has an existing maintenance strategy for a given engine then maintenance of these maps might be a no-brainer.

Pros:
· Transformation can be very fast (if correct engine is chosen)
· Can share engine/transforms between different technologies
· Can use company-standard transforms if present/required
Cons:
· Can't use it with Receive/Send Ports, only with Orchestrations
· Can be difficult to maintain if not well understood
· Caching is left up to developer
· Performance is relevant to the skill of the developer and engine
[bookmark: Part13TransformInCode][bookmark: _Toc447268220]Transformation in code
By this I mean transformation involving classes and serialization.
If you've read the previous post (Understanding the BizTalk Mapper: Part 12 - Performance and Maintainability) then you'll know that this sort of transformation can be blazingly fast.
However, this needs to be taken with a caveat: transformation in code will only be as good as the programmer writing the code.
If you write C# or VB.NET code which performs badly, then your transformations will perform badly.
XSLT doesn't suffer from this problem: because the language is designed to execute rapidly over XML structures: it's more difficult to write poorly performing XSLT code than C#/VB.NET code.

However, using C#/VB.NET can be a god-send in certain situations.
One example is where you're using inheritance i.e. base elements/types in an XSD (if any of the elements/attributes in an XML instance have an xsi:type attribute, then you're using inheritance).
In these cases, using source code and inheritance can reduce the amount of code you need to write as you work with the base class without worrying about what derived class was actually passed to you.

But remember: don't use C#/VB.NET code to perform transformation simply because you don't understand XSLT. For a lot of situations, it can be significantly faster to create XSLT code to perform a transformation than the C#/VB.NET equivalent – and to another XSLT developer it will be easier to understand and maintain.

Pros:
· Transforms can be fast
· Can be easier to develop/maintain transforms if developer knows C# better than XSLT
Cons:
· Can't use it with Receive/Send Ports, only with Orchestrations
· Can be difficult to maintain if not well documented
· Performance is relevant to the skill of the developer
[bookmark: Part13WhichOne][bookmark: _Toc447268221]Which one should you use?
Well without knowing your requirements that's a bit like saying "which airline should I fly with?"
Tell me your requirements, and I'll tell you the best airline!
[the answer's always Virgin Atlantic or Air New Zealand, by the way... ;-)]

However, (in my own biased opinion) I would suggest that it depends on what’s more important to you: maintainability of performance. From a personal point of view, I think pure XSLT way is best, followed very closely by doing transformations in code using serializable classes. And last comes the BizTalk Mapper using default functoids.

If your performance/maintenance requirements are minimal then it won't really matter.
If you must have the best performance, then use pure XSLT or transformations in code.

If maintainability is key, and your map is fairly simple, then using the Mapper is the best choice, as it’s easier to visualise the transformation.

One thing to bear in mind is this: The BizTalk Mapper creates XSLT.
XSLT is a functional language which uses templates and pattern matching and as such is very different from a procedural/imperative language, such as Java, C#, C++, or VB.

It's quite common for non-XSLT programmers to ask how to create a for/while loop, or how to do an if/case statement in XSLT.

If you're asking those questions, you should to go do a basic course on XSLT (or read a book) as it works in a very different way.

Properly written XSLT is elegant and fairly simple to follow.

OK, so that's the end of this series of posts.
I hope it's been useful to you in some way.
I'll gladly welcome any feedback on the series.

Agree or disagree with what I've written? Please let me know.

Have I made any mistakes, or misrepresented a point of view? I'll happily make corrections if necessary.

Let me know what you think by leaving comments, or emailing me at bizbert@probertsolutions.com.

Thanks for taking the time to stop by and read.

Daniel Probert
30th March 2016.

[bookmark: _Toc447268222]
Appendix A: Useful Links
This is a collection of links to articles and blog posts that you may find useful.

· Calling .NET assemblies using Script Functoid use XSLT Extension Objects http://msdn2.microsoft.com/en-us/library/tf741884.aspx

· Scripts in XSLT files will cause ASP.NET to run out of memory
https://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=97311

· PRB: Cannot unload assemblies that you create and load by using script in XSLT
http://support.microsoft.com/kb/316775

· XSLT scripting (msxsl:script) in .NET - pure fast evil
http://www.tkachenko.com/blog/archives/000620.html

· XSLT Security Considerations
http://technet.microsoft.com/en-us/library/wk7yxab1(VS.80).aspx

· XPath operators
http://www.w3schools.com/xpath/xpath_operators.asp

· Microsoft XML Team's WebLog: Introducing XslCompiledTransform
http://blogs.msdn.com/xmlteam/articles/Introducing_XslCompiledTransform.aspx

· Microsoft XPath/XSLT Extensions
http://msdn2.microsoft.com/en-us/library/ms256453(VS.80).aspx

Page 3 of 69	 © Daniel Probert 2008-2016 (source code © Microsoft Corporation)		01/04/2016 v2.0
image1.jpeg
B 5§ BizTalk Mapper - ValueMappingFlatten.xml

_ =l8ix|

Bl Edt Vew Took

Help

g oo
Recordt
& B Recondz -

B Nome

Byse—— |

D E|aE x| 8| hE|EE

o]\ Page 1

Propeties | Vaes | Gutpa | Warnngs |

Propety [Value. || [Propeny [Walue -
Name Value Name 7

Descipiion Descipiion

Type Atibute Type Atibute

Data Type Data Type

Dot Tune Vs _'_I Dot Tune Valins

< <

image2.png
[5chemaReference(TestMaps.Employees", typeaf(Employees), SchemaReference("Testhlaps. Employees”,
publcsealed class TestMap : TransformBase

1

private const string _strArglis
private conststring _strMay

private const string _strSrcSchemasListd
private const string _strTrgSchemasListd

‘<ExtensionObiects [>In';

01" encoding=\"UTF-161"7> {n<l-- Wrtten by Dan -
esttleps Employees';
estiaps Employees';

publc override string[] SourceSchemas

it
get
{
-
.
publc override string(] TargetSchemas
it
get
{
-
.
publc overrde string XmiContent
it
get
{
return " <2l version="10{" encodling=\'UTF-16{"7> {n<I-- Written by Dan -—> {n <xsl:styleshest x
¥
.
publc overrde string XsltArgumentListContent
it

‘<ExtensionObects [>In';

image3.png
= Employees
B Employee
@name: Mr test User
@id: 1
@department: Manufacturing
@type: Manager
Data
B Employee
@name: Mrs test User
@id: 2
@department: Manufacturing
@type: Staff
Data
B Employee
@name: Master Helper
@id: 3
@department: Manufacturing
@type: Staff

image4.png
= Employees

= Staff
@name: Mrs test User
@id: 2
@department: Manufacturing

& AdditionalData

Staff

£ Manager
@name: Mr test User

@id: 1
AdditionalData

